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Abstract 

Human interaction involves the organization of a collection of 
sensorimotor systems across space and time. The study of 
how coordination develops in child-parent interaction has 
primarily focused on understanding the development of 
specific coordination patterns from individual modalities. 
However, less work has taken a systems view and 
investigated the development of coordination among multiple 
interdependent behaviors. In the present work, we used 
Granger causality as a mathematical model to construct 
dyadic causal networks of multimodal data collected from a 
longitudinal study of child-parent interaction. At a group-
level, we observed increases in the number of causal links and 
in the strength of such links in dyadic interaction from 9-
months to 12-months. At an individual-level, we observed 
high variability in the types of causal links that emerged 
across developmental ages. We discuss these results in terms 
of a multicausality hypothesis for the development of human 
coordination. 
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Introduction 

Human interaction entails the organization of a vast array of 

sensorimotor systems across space and time (Kendon, 

1970). We imitate, align and synchronize over a spectrum of 

social behaviors with our social partners during 

communication and studies have shown fine-grained 

temporal structures across modalities in interpersonal 

coordination (Fusaroli & Tylén, 2016; Garrod & Pickering, 

2009; Louwerse, Dale, Bard, & Jeuniaux, 2012). How we 

are able to organize behaviors across multiple modalities 

and achieve seamless coordination in only fractions of a 

second is one of the most important questions about human 

cognition (Marsh, Richardson, & Schmidt, 2009). 

One effective approach to answering this question is to 

examine how such smooth coordination evolves during 

development. In developmental science, past research have 

shown that within specific behavioral modalities, 

coordinated behaviors emerge early in life and develop 

incrementally with age (Yale, Messinger, Cobo-Lewis, & 

Delgado, 2003). For example, infants start to follow and 

coordinate the gaze direction of their social partner (Scaife 

& Bruner, 1975) and form vocal and facial expression 

feedback loops with their parents early in their first year of 

life (Cohn & Tronick, 1988). Such social contingencies are 

suggested to be indicative of later language development 

(Goldstein, King, & West, 2003; Mundy & Newell, 2007; 

Warlaumont, Richards, Gilkerson, & Oller, 2014).  

Development is about change. The multicausality 

assumption in dynamical systems theory (Smith & Thelen, 

2003) indicates that change and growth in the system 

emerge through the relationships between different 

interdependent components, without an executive pre-

programmed and unified path. Certain patterns and 

behavioral influences emerge or diminish at different 

developmental ages, and through different developmental 

pathways. In light of this, the aim of the present study is to 

examine the change in the organization of coordination 

among multiple interdependent behaviors. More 

specifically, we want to investigate the connectivity and 

directional influences from one modality to another in the 

course of development. 

Towards this goal, in this paper, we proposed a novel 

approach to modeling multimodal coordinated behaviors 

between children and parents as a directed graph network 

with Granger causality (Bressler & Seth, 2011; Granger, 

1969). A longitudinal study was conducted in which we 

invited children at 9 months and their parents to participate 

in a toy play experiment, and again at 12 months. During the 

toy play sessions, we recorded the dyad’s momentary eye 

gaze and manual action data with eye-trackers and multi-

view video recording. With this study and our analytic 

approach, we can investigate the development of human 

coordination through directional causal relations among a 

network of interdependent behavioral variables. 

This framework of modeling child-parent interaction as 

causal networks allowed us to determine changes in the 

amount of causal links and the strength of causal links 

across 9- and 12-months. We tested two specific hypotheses 

about the development of coordination. First, the 

developmental hypothesis: on a group level, we expected 

that the number and strength of causal links in the child-

parent coordination network would increase from 9- to 12-



Figure 1: (a) A dual eye-tracking child-parent interaction 

paradigm. (b) Eye movement and object manipulation 

events from both the child and parent were coded into 

categorical data streams. The data streams were then 

divided into three different ROI groups, preserving only 

the onset of events. Finally, per subject, the three groups 

were concatenated as input for subsequent calculations of 

Granger causality. 

months. Second, the multicausality hypothesis: we expected 

the increased coordination to be achieved by the emergence 

of new causal influences in the network, among multiple 

different behavior variables. One key assumption of this 

hypothesis is that no causal link has developmental priority. 

If dyads show individual differences in their coordination 

development pattern, it would be an indication that they 

each follow distinct pathways to achieve increased levels of 

sensorimotor coordination. 

Granger Causality for Point Process Data 

Coordination patterns change throughout the course of an 

interaction and require real-time adjustment of actions and 

predictions in accordance with their sensorimotor input 

(Clark & Brennan, 1991; Yu & Smith, 2016). When we 

study interpersonal coordination and development from a 

dynamical approach, one challenge is quantifying 

directional influence and connectivity between two specific 

variables. This is due, in part, to the interconnectivity and 

complexity of information exchange among behavioral 

variables (Fusaroli, Konvalinka, & Wallot, 2014; Hidaka & 

Yu, 2010). 

Granger causality, or G-causality, is a well-established 

and effective method for the investigation of directional 

relationships among a set of interdependent variables in 

many domains (Bressler & Seth, 2011). Granger (1969) 

formalized the basic idea of causality between signals 

introduced by Wiener (1956) based on multivariate 

autoregressive (MVAR) models: if past values of Y contain 

information that help predict X above and beyond the 

information contained in the past values of X alone, then Y 

is said to Granger-cause X.  

Kim et al. (2011) proposed a point process framework to 

enable G-causality to be applied to point process data with a 

discrete nature. A temporal point process is a stochastic time 

series of binary events that occurs in continuous time. It can 

only take on two values at any point in time, indicating 

whether or not an event has occurred. With a time series 

dataset of an ensemble of variables, the occurring likelihood 

of the event variable X can be modeled by the generalized 

linear model (GLM): a linear combination of time series X’s 

dependency to the history of each individual element in the 

ensemble. Given a set of multivariate temporal streams, the 

causal relationships from variable Y to X is assessed by 

calculating the relative reduction in the likelihood of 

producing this particular history of time series of X when 

the history of Y is excluded, compared with the likelihood if 

all the available covariates are used in the prediction 

calculation. If the prediction likelihood is reduced when the 

history of variable Y is excluded from calculation, then there 

exists a Granger causal relationship from Y to X. In 

addition, Kim et al. (2011) proposed that the sign of 

averaged influence of the occurring history of variable Y on 

X can be used to distinguish excitatory (positive estimate) 

and inhibitory (negative estimate) influences: whether the 

event history of Y is more or less likely to lead to the event 

occurring for variable X. Finally, the point process 

framework also affords researchers to identify the statistical 

significance of a causal link based on the likelihood ratio 

test statistic. The goodness-of-fit statistics were applied by 

comparing the deviance between the estimated model with 

trigger variable Y excluded and the estimated full model in 

the GLM framework. Then, a multiple hypothesis testing 

error measure, FDR, proposed in (Benjamini & Hochberg, 

1995; Storey, 2002) was used to control the expected 

proportion of false discovery rate when the number of 

hypothesis tests is large and the number of rejected null 

hypotheses is consequentially large. 

Calculating G-causality with GLM model fitting makes 

very general assumptions about the data (Barnett, Barrett, & 

Seth, 2009) and with the point process framework, we are 

able to apply G-cause to categorical behavioral data. In the 

present paper, we used this framework to construct 

quantitative causal networks among different behavioral 

modalities in child-parent interaction and study child’s 

coordination development. 

Methods 

Participants 

21 parent-child dyads participated in this study. Dyads came 

into the lab when the children were 9-months-old and 12-

months-old. 



Figure 2: (a) The G-cause coordination network among 

child eye, child hand, parent eye and parent hand time 

series for Dyad#1 at 9 months (left) and 12 months 

(right); red links are significantly positive G-cause links 

and the number indicates the G-cause value of that causal 

relation. (b) The G-cause coordination network for 

Dyad#2 at 9 months (left) and 12 months (right). 

Procedure 

Figure 1(a) shows the experimental setup of our dual eye-

tracking child-parent interaction experimental paradigm (Yu 

& Smith, 2013, 2016). Parents and their children were 

seated across from each other at a plain white table (61cm × 

91cm × 64cm). Head-mounted Positive Science eye trackers 

(Franchak, Kretch, Soska, & Adolph, 2011) were put on 

both the child and parent to capture their gaze data in real 

time. Each eye-tracking system includes an infrared camera 

that records eye images (mounted on the head and pointed 

to the right eye, see Figure 1a), and a scene camera 

capturing the first-person view from the participant’s 

perspective. The scene camera’s visual field is 108 degrees 

providing a broad view. Each eye-tracking system recorded 

both the first-person view video and precise gaze allocation 

in that view, with a sampling rate of 30 frames per second. 

Another high-resolution camera was mounted above the 

table and provided a bird’s-eye view at a recording rate of 

30 frames per second. 

For each trial of the experiment, there were two sets of 

toys. Each set consisted of three toy objects with three 

different colors (blue, green, red). The toys were of similar 

size and weight. Parents were told that the goal of the 

experiment was to study how parents and toddlers interacted 

with objects during free play and they were asked to engage 

their children with the toys as what they would naturally do 

in daily life. Each of the two sets of toys was played with 

twice for 90 seconds, resulting in approximately six minutes 

of play over four trials from each dyad. Toy set order 

(ABAB or BABA) was counterbalanced across dyads. 

Data Processing  

Human coders went through the videos from multiple 

viewpoints and manually annotated frame-by-frame about 

which object was gazed at and held by the child and the 

parent with both of their hands. In this study, we coded four 

Region-Of-Interest (ROI)s for the eye movement data: blue, 

green and red object categories (1-3) and other (0). Each 

value represents where the child or the parent was looking at 

in every frame. The participants could be looking at each 

other’s face, but our analysis didn’t include face looking 

events in this paper.  The same object and empty ROIs (0-3) 

were also the coding categories for hand action data 

streams, indicating the target object was held by either the 

left or the right hand of the child and the parent. For each 

trial, after data processing, four coded categorical data event 

streams (child gaze events, child holding events, parent gaze 

events, and parent holding events) were obtained. 

The next step was to convert our behavioral temporal data 

streams into multivariate point processes. All behavioral 

data streams were divided into three groups by different 

ROIs and then only the onsets of object ROI events were 

preserved to fit the point process framework for calculating 

G-causality. Figure 1(b) shows the point process data 

streams from one experimental trial. After point process 

conversion, for each dyad, three groups were concatenated 

as input data for calculating G-causality. In each group, all 

streams contained the onset of the same category of events. 

With this point process data transformation, we extracted 

Granger causality among different behavioral variables 

acting on the same object. For example, we estimated G-

causality from the event of child looking at the red object to 

the occurrence of the parent looking at the same object. 

Analysis 

For each dyad, we constructed a dyadic causal network 

among four behavioral variables (child eye movement, child 

hand action, parent eye movement and parent hand action) 

at 9 months and 12 months. Figure 2 shows the G-cause 

network constructed with two dyads’ interaction data. In 

each network, there are 4 behavioral variables (child eye, 

child hand, parent eye and parent hand) and 12 different 

types of directional links between every pair of variables. 

The different types of directional links are illustrated in 

Figure 2. 

Significance tests based on the likelihood ratio test 

statistic with FDR controlling false positive causal 

interactions (Storey, 2002; Kim et al., 2011) was performed 

to determine the statistical significance of every causal link 

with regard to the entire network. In Figure 2, red colored 

links indicate the significantly positive links with number at 

the end of each link representing the G-cause value from 

one behavioral variable to the other. For example, at 12 

months, Dyad#1 had a significantly positive causal link 

from child’s gaze to child’s holding behavior. This means 

that the child was looking at a certain object and the 

occurrence of this event significantly increased the 

likelihood of the child holding the same object. In addition, 

to best comprehend the magnitude of G-cause values for our 



Figure 3: (a) Amount of significantly positive G-cause 

links and (b) average G-cause values of child-parent eye 

hand coordination networks at 9 months and 12 months.  

multimodal coordination data, we also calculated the 

baseline G-cause network for every interaction. This was 

done by randomizing the order of event streams (with all 

ROIs and their event durations) for the behavioral variables. 

Then, the randomized onsets of object ROI events were 

preserved to convert the data to fit point process model for 

baseline G-cause network calculation. 

The source code, a more detailed explanation of the 

Granger causality calculation process and more 

supplementary materials of this study are available at:  

https://github.com/lingerxu/Granger_causality_coordination

. 

Results 

To examine our developmental hypothesis – increased 

coordination from 9-months to 12-months – we first looked 

at two group-level measures: the number of significantly 

positive G-cause links and the average G-cause value per 

link in each interaction network. For example, in Figure 2a, 

Dyad#1 had 3 significantly positive links at 9 months and 5 

links at 12 months and the average G-cause value per link 

was 2.96 at 9 months (baseline value 0.19) and -2.27 at 12 

months (baseline value -0.04). Average baseline G-cause 

values obtained with the randomized event streams were 

close to 0 for both age groups. In the present paper, we 

focused on examining the significantly positive G-cause 

links, which have much higher values than baseline and 

entail a strong causal link from one behavior variable to 

another. 

As shown in Figure 3, we observed more significantly 

positive G-cause links at 12 months (M=3.95, SD=0.23) 

compared to each dyad’s network at 9 months (M=2.38, 

SD=0.20), t(20)=3.27, p=.004. We also observed that the G-

cause network for 12 month olds (M=5.50, SD=0.39) had 

significantly higher average G-cause values per link than 9 

months (M=2.52, SD=0.26), t(20)=3.85, p<.0001. Overall, 

the multimodal coordination between child and parent 

showed increased developmental changes from 9 months to 

12 months. The observation of increased positive causal 

links in the network and higher G-cause values on average 

from 9- to 12-months, suggests that the coordinative 

patterns of the child-parent dyadic system are becoming 

more dense and stronger. 

Multicausality and Individual Differences 

The main proposal of the multicausality hypothesis is that 

increased coordination is achieved by the emergence of 

multiple new causal influences between different pairs of 

behavioral variables and that no causal link has 

developmental priority. The results observed in the last 

section provided clear evidence that child-parent dyadic 

systems become more coordinated from 9 months to 12 

months. Next, we want to look at how this increased level of 

coordination was achieved and whether we will observe 

individual differences in the developmental pattern in the 

dyadic causal network. 

When we take a closer look at the individual development 

between the two networks of each dyad, and how each 

causal link in the network changed from 9 months to 12 

months, there are multiple types of change. Here we will 

mainly focus on examining the emergence of new 

significantly positive link, which means that this positive 

causal link did not exist in the 9-month coordination 

network, and only appeared in the 12-month network. 

With 12 different types of G-cause links in total, the 

development of the coordination network can be described 

by a vector of developmental changes in each type of causal 

relations. The developmental coordination row vector for 

each dyad is visualized in Figure 4a. Three causal relation 

links, child hand→child eye, parent hand→child hand and 

child hand→parent hand, are omitted in the illustration 

because we did not observe any emergence of new positive 

links in these three link types. For example, the two dyads 

in Figure 2 can be mapped to the first two vector 

representations in Figure 4a. For Dyad#1, two new positive 

links emerged in their G-cause network at 12 months. This 

emergence is depicted in the developmental coordination 

vector: two red cells in parent eye→child eye and child eye

→child hand categories (see Figure 4a, row 1). In another 

example, for Dyad#2 (see Figure 4a, row 2), five new links 

emerged from 9 months to 12 months. And we can see that, 

between the two dyads, four out of five emergent links from 

Dyad#2 were completely different from the G-cause relation 

types in which Dyad#1’s emergent links belonged to. 

Finally, if increased coordination from 9 months to 12 

months was achieved through one type of causal link with 

causal priority, then the hypothesized frequency distribution 

of emergent links will be similar to Figure 4b. We can 

observe that the majority of emergent links belong to the 

same causal relation type. Alternatively, the multicausality 

hypothesis entails that increased coordination is achieved 

via multiple different causal relations. In an ideal situation, 

we would observe a uniform frequency distribution of 

emergent causal relations. This possibility is depicted in 

Figure 4c. Figure 4d shows the empirical frequency 

distribution of emergent links. The empirical distribution 

provides evidence for a diffuse collection of emergent 

causal relations, supporting the multicausality hypothesis 



Figure 4: (a) The development coordination vector for each dyad’s G-cause network. Red cells indicate the emergence of 

significantly positive G-cause links from 9 months to 12 months between different pairs of behavior variables. Each row 

represents the developmental change in coordination network for one dyad. Each column represents the developmental 

change for a particular type of causal relation link. Three causal relation links, child hand→child eye, parent hand→child 

hand and child hand→parent hand, are omitted here because we did not observe the emergence of significantly positive 

links. (b) The hypothesized frequency distribution of emergent causal links if increased coordination was achieved by only 

one link with causal priority. (c) Illustration of the frequency distribution of emergent links for the ideal uniform 

distribution under the multicausality hypothesis. (d) The empirical frequency distribution of emergent links in our results. 

that child-parent dyads are utilizing multiple coordination 

patterns to achieve increased coordination. 

General Discussion 

The goal of the present paper was to investigate the 

development of multimodal organization in naturalistic 

child-parent interactions. We used a novel causal network 

modeling approach to better understand how multimodal 

dyadic systems change across developmental age. The 

observed results provide preliminary evidence for the 

developmental and multicausality hypotheses that we 

proposed at the outset of the paper. 

At a group-level, we observed an increase in the amount 

of causal links and an increase in the strength of causal links 

from 9 months to 12 months. These results provided support 

for the developmental hypothesis, suggesting that the 

multimodal coordination patterns across the child-parent 

dyadic system became stronger with more components 

being coordinated within the dyadic system. This is an 

important observation because it provides novel evidence 

for an important property of the developing child-parent 

dyadic system: development includes adding redundancy to 

the social interaction by creating new pathways for 

coordination to occur (Yu & Smith, 2016). Redundancy is 

an important property for any complex system because it 

affords adaptability in the face of intrinsic and extrinsic 

perturbations (Kugler & Turvey, 1987; Thelen & Smith, 

1998). 

At an individual level, we observed that the causal 

relation links were distributed among all types of G-cause 

relations between two behavioral variables both within and 

between agents. Furthermore, the frequency distribution of 

emergent causal links was approximately uniform 

suggesting that there was no single behavioral link taking 

developmental causal priority in the network. These results 

add preliminary support for the multicausality hypothesis. 

These observations provide important conceptual and 

empirical contributions. Multicausality has been proposed to 

be an important property of a complex system (Smith & 

Thelen, 2003), however there has been little work to extend 

the proposal of multicausality to a dyadic model of child-

parent interactions. This framework quantifies the 

directional causal influences between different behavioral 

variables to model the complex system of interpersonal 

coordination at sensorimotor level. Thus, it can provide 

heuristics towards understanding the individual differences 

in the establishment of joint attention and possibly the 

reasons underlying the correlations between joint attention 

and many developmental outcomes (Mundy et al., 2007; 

Tomasello & Farrar, 1986; Yu & Smith, 2016). Finally, to 

our knowledge, this is the first study to use MVAR-based 

Granger causality to model multimodal coordination as 

directed causal networks. Our results provide evidence for 



the promise of this analysis method as a novel dynamic 

modeling method for many domains, such as developmental 

science, behavioral science, etc. 
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