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When humans are addressing multiple robots with informative speech acts 
(Clark & Carlson 1982), their cognitive resources are shared between all the 
participating robot agents. For each moment, the user’s behavior is not only 
determined by the actions of the robot that they are directly gazing at, but also 
shaped by the behaviors from all the other robots in the shared environment. 
We define cooperative behavior as the action performed by the robots that are 
not capturing the user’s direct attention. In this paper, we are interested in how 
the human participants adjust and coordinate their own behavioral cues when 
the robot agents are performing different cooperative gaze behaviors. A novel 
gaze-contingent platform was designed and implemented. The robots’ behaviors 
were triggered by the participant’s attentional shifts in real time. Results showed 
that the human participants were highly sensitive when the robot agents were 
performing different cooperative gazing behaviors.
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1.  Introduction

With the advance of robotics technology and prevalence of robots all around the 
world (Tapus et al. 2007; Goodrich & Schultz 2007; Rich & Sidner 2009), inves-
tigating and further improving collaborative behaviors among multiple robot 
agents has drawn keen interest among researchers. Such collaborations not 
only take places between teams of robots (Parker 1998; Dudek et al. 2002; Balch 
2002; Farinelli et al. 2004), but more often between humans and robots (Duffy 
2003; Dautenhahn 2007; Mutlu et al. 2009; Cakmak et al. 2011). For example, a 
human supervisor may guide a group of robot workers in an assembly line; or 
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a housekeeper may ask a group of robot assistants to clean a house, in which 
each robot is designated to finish a particular task (e.g. cleaning a floor, clean-
ing a desk); or a human team leader may give directions to a group of robot 
teammates working together on a rescuing operation (Casper & Murphy 2003). 
There are two major advantages to deploying multiple robots in those applica-
tions. First, a complicated task can be decomposed into a set of simple ones, each 
of which can be accomplished by individual robots in parallel. In the rescuing 
example, multiple robots can execute an exhaustive search for victims in a broad 
area, which may largely reduce the amount of search time (Kitano et al. 1999; 
Modi et al. 2005). Second, individual robots equipped with multiple advanced 
functions can be expensive to build while single-functioning robots can be low-
cost and easy to maintain and operate (McLurkin et al. 2010; Rubenstein et al. 
2012). Even though each individual robot can accomplish only a simple task, 
multiple robots are able to work together to perform more complex tasks (Cao 
et al. 1997; Parker 2008).

The above scenarios, however, pose a particular challenge in human-robot 
interaction: to establish smooth and effective interaction between human users 
and multiple robots. Every individual robot within a group will need to be aware 
of the user’s internal state moment by moment, read it correctly, and coordinate 
with other robots to respond promptly and appropriately. To build robots that 
can infer the human’s momentary cognitive state, a fundamental understand-
ing of how humans generate real-time behaviors when reacting and responding 
to multiple robots in such reciprocal interaction is critical. Inferring the joint 
intention and cooperative activity of the whole group goes beyond just sum-
ming up each individual agent’s intention (Demiris 2007). Instead, it involves 
an integration of mutual responsiveness, commitment to the joint activity and 
commitment to mutual support within a group (Bratman 1992). Thus, human 
multi-robot interaction poses additional questions and challenges over typical 
dyadic human-robot interaction, mainly because a user has to decide which 
robot he should attend to and interact with moment by moment, what behavior 
he should generate, and whether such behavior will be toward one robot, several 
of them or the whole group. Such decisions depend on responsive behaviors he 
observed from each individual robot and his inference of their “cognitive states”. 
In such a context, the user’s responsive behavior toward one robot is essentially 
influenced by not only the robot’s behaviors that he or she directly interacts 
with but also the behaviors of the other robots in the entire group indirectly. To 
achieve the goal of building responsive social robots, we need to gain a deeper 
understanding of the effectiveness of the robot’s behaviors on human partici-
pants during group interaction.
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Eye gaze plays an important role in both human-human and human-robot 
group interactions (Sacks et al. 1974; Matsusaka et al. 2001; Bennewitz et al. 2005; 
Mutlu 2009). Vertegaal argued that eye gaze serves as a good indicator for predicting 
the group’s overall intention from moment to moment and coordinating between 
speakers and listeners in a multi-party interaction (Vertegaal et al. 2001). During 
face-to-face interaction, people use eye gaze to monitor every member’s attention 
within the group, show whom they are addressing, and suggest the next speaker 
during turn-takings (Kendon 1967; Isaacs & Tang 1994; Vertegaal et al. 2000). 
Mutlu and colleagues (Mutlu et al. 2009) have shown that when a single robot agent 
is interacting with multiple human participants, gaze cues from the robot regulate 
the whole communication and successfully signaled three types of listener roles 
proposed by Goffman: addressee, bystander and over-hearer (Goffman 1981). Dur-
ing the experiment, the human participants successfully interpreted and reacted to 
the gaze cues formed by the robot agent in over 97% of the cases.

So far, few studies have looked into the effect of gaze cues when multiple 
robots and one human user engage in a task. When a human participant talks to 
multiple robots, the robots should pay attention to the user’s behaviors and carry 
out actions accordingly. Following the definition proposed by Clark and Carlson 
in 1982, the speech acts performed by the speaker when he or she is providing 
information and instructions to a group of addressees are categorized as informa-
tives: “the fundamental kind of participant-directed illocutionary act is one by 
which the speaker jointly informs all the participants”. Evidence has shown that 
essentially every traditional illocutionary act in group interaction is carried out 
in the form of informatives (Searle 1976). Similarly, during human multi-robot 
interaction, the human speaker has to ensure that both the directly addressed and 
other robot listeners recognize his or her intention. Thus, how should individual 
robots as addressees behave in such scenarios so that they can best facilitate group 
communication? For instance, should we program the robots to generate the same 
gaze behaviors toward the human user at the same time, all looking at the human’s 
face or all looking away? When the human user pays attention to a particular 
robot, should the other robots look away from the human user to not interfere 
with mutual gaze between the target robot and the human, or alternatively, should 
they look at the human’s face to compete for the human’s attention? As shown in 
Figure 1, the focus of the present paper is to understand such cooperative gazing 
behavior in a multiparty interaction.

There are different possible cooperative gazing behaviors in the context of a 
human multi-robot interaction: robots can follow the human user’s gaze; robots 
can actively direct the human user to look at itself or another location; or robots 
can encourage the user to pay more attention toward other robots. When the user 
is trying to convey information to the entire group, the user is likely to be engaged 
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in mutual gaze with different robots from time to time, e.g. scanning through indi-
vidual robots one by one while speaking. If different robot agents adopt differ-
ent cooperative gazing strategies in the same interaction, would the users even 
be aware of different behaviors generated by individual robots within the robot 
group? And if so, how would the participants adjust their behaviors dynamically 
in real-time? How would robot agents with different cooperative gazing strategies 
influence each other in the same interaction? In this paper, we are taking the first 
step to explore these questions.

In the following sections, we will first introduce a human multi-robot interac-
tive platform that we developed and used in the present study. Within this system, 
the robots’ reactions are contingent on the participant’s behaviors in real-time 
while each robot’s reactive gazing behaviors are controlled independently. Built 
upon this interactive platform, different types of interactions are created by con-
trolling the robots to adopt different types of cooperative gazing behaviors.

Real-time signals

Human
attention

recognition

Object
detection

Robot gaze-
contingent action

control

Where should i look?
Will the user notice me?

Objects

Participant

Figure 1.  The system overview of our interactive platform. The human participants’ behaviors 
were recorded, tracked and processed. Target objects attended to by the human were detected 
at each moment and the signals were fed into the robot action control module so that the robot 
agents were reacting to the participant’s behaviors in real-time. The action control unit of each 
robot was independent from each other and different robots were programmed with different 
gaze-contingent behavioral strategies. The triadic interaction and the thought bubble in the 
center generated by the robot icon on the right side highlight the key scenario and question  
we were trying to explore in the designed experiment
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2.  A human multi-robot multimodal interactive paradigm

For this study, we implemented a multimodal gaze-contingent platform with 
two Nao humanoid robots manufactured by Aldebaran Robotics (Gouaillier 
et  al. 2009). Using this platform, we asked human participants to interact with 
two robots at the same time to accomplish a joint task involving multiple objects 
on a table. Each robot has its own behavioral control unit and acted indepen-
dently during the experiment. This platform allows us to tightly control the robots’ 
responsive actions in a systematic way. As a result, we can analyze the participants’ 
sensitivity and responsive behaviors to cooperative gaze behaviors performed by 
the two robots.

2.1  Gaze-Contingent platform

Figure 1 shows the overall structure of our multimodal human-robot interaction 
platform. In this system, the robot’s gaze behavior is triggered by the participant’s 
eye gaze in real-time. The human-robot interface detects the participant’s visual 
attention through real-time eye tracking, and then generates gaze-contingent 
behaviors through the robot control component. Multiple sensing devices were 
used to record first-person view videos from both the participant’s and the robots’ 
perspectives, human speech, and most importantly, participant’s gaze data. The 
two robots’ head movements and gaze directions are also tracked. This rich dataset 
allows us to extract and analyze multimodal behavioral streams to discover fine-
grained micro-level patterns in face-to-face human-robot interactions.

The Nao robot has 25 degrees of freedom. Its eye unit is made of a CMOS 
camera with an image resolution of 640 * 480 pixels at a sample rate of 30 frames 
per second with a view angle of 61° horizontally and 47° vertically. To track the 
participant’s eye movements, a head-mounted eye tracker (Eye-Trac 6000, ASL 
LLC) was positioned on the participant’s forehead. The eye tracker contains a 
scene camera to capture the first-person view video from the human’s perspec-
tive at a rate of 30 frames per second. In addition, the eye tracking system out-
puts x and y coordinates in the first person video, indicating where the human 
participant is looking. Both gaze data and image frames were transferred to and 
processed by the human attention detection component in the platform. To facili-
tate the object detection process, the interaction environment was constituted 
by white curtains and objects with single solid colors. A method based on color 
blob detection was developed to automatically segment objects in the first-person 
view camera in real time (Yu et al. 2009). In addition, a unique visual marker was 
attached to each robot’s head to facilitate the automatic detection of the robots’ 
head positions in the human’s view. The eye gaze location was integrated with 
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the detected objects and robot head blobs in the first-person view to compute 
the target of attention – a Region-Of-Interest (ROI) at each moment indicating 
which target the participant was looking at. The ROI could be either one of the 
four objects or one of the two robots (see Figure 2 for details). The participant’s 
current attention target was then sent to a robot action control unit to guide the 
robot’s actions in real time. The whole procedure of image processing took about 
50ms and the robot’s execution of a head turn toward a target object took 250ms 
on average. In total, the potential lag from attention detection to gaze following 
was around 300ms.

First person view image Segmented target blobs

Object
location

Eye gaze ROI stream

Gaze
location

Image with eye
tracking crosshair

Figure 2.  An overview of attention detection based on first-person view video and gaze data. 
Several visual targets (e.g. objects and robot heads) were detected and extracted based on 
color blobs in image frames. Next, (x, y) gaze location was superimposed on the first-person 
image to find the object of attention at each moment. For more detailed information in video 
processing, please see Yu et al. (2009) and Yu et al. (2010b)

A straightforward way to build a gaze-contingent robot control system is 
to follow exactly where the human looks moment by moment and react to the 
user’s eye gaze shift as fast as possible. However, we noticed that in practice, this 
solution would not necessarily lead to real-time gaze following. At time, people 
briefly look at one location and quickly shift to another location. If the robot fol-
lows all of these rapid attention shifts, then the human’s attention may already 
switch to the next ROI even before the robot completes the execution of a head 
turn to join the human with the detected ROI. Furthermore, even though the eye 
tracking system works quite well overall, it is inevitable that it may occasionally 
fail to track gaze direction. Therefore, the robot’s attention control system needs 
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to decide what to do at this moment without gaze data fed from eye tracking. To 
build a control system that can reliably respond to human gaze, we decided to 
keep track of not only the current gaze data point but also a set of 30 data points 
in the past which constitute a buffer of 1 second. Only after more than 50% 
of data points in the buffer indicated the same ROI would the control system 
send a motor command to switch the robot’s attention. The 50% criterion was 
based on the analysis of empirical data collected from pilot experiments as well 
as the results reported on mean visual fixations during various viewing tasks 
(Le Meur et al. 2010). The buffered mechanism added an additional 350ms lag 
in the robot’s response but gave us much more robust following behaviors from 
the robot.

By taking all the lags in this real-time control system into account, a thor-
ough test revealed that the robot’s response time was 657 ms on average. Human 
response times for attentional shifts range from 250ms to 350ms under different 
conditions in visual cuing experimental paradigms (Posner 1980). The gaze cue-
ing effect emerged with varying stimulus-onset asynchronies (SOAs) from 300ms 
to 1005ms with modified Posner’s cueing paradigms (Frischen et al. 2007). But 
these data were reported with on-screen visual stimulus in laboratories; the reac-
tion time is probably longer in naturalistic social environment when interacting 
with other agents. A reaction time of 657ms can be considered as comparable 
to a human’s response time during face-to-face social interaction. During our 
post-experiment interviews, most participants reported that the whole interac-
tion was smooth and the robotic agents were engaging and actively following their 
attention.

2.2  Experiment design

We employed a word learning task where the human participants were asked to 
teach two robots the names of a set of objects. This task was selected for several 
reasons: (1) it has an explicit goal that allows participants to naturally interact 
with the robots while being constrained enough to make real-time processing of 
the robots’ actions feasible; (2) it has been used successfully in a variety of behav-
ioral studies investigating multimodal human-human interactions (Yu et  al. 
2009; Smith et al. 2010; Yu & Smith 2012) and human-robot interaction (Yu et al. 
2012); (3) it allows us to investigate the fine-grained temporal patterns and rela-
tionships between human eye gaze and human speech as part of the larger joint 
attention processes; (4) beyond understanding the principles of human multi-
robot interactions, the task itself has its own applied utilities. Instead of teaching 
each robot individually, it is more efficient for a human user to teach a group of 
robots so that all of them can acquire new knowledge simultaneously through 
social interaction.
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Figure 3.  An overview of the experimental design: graph (a) is the active-following condi-
tion (AFC) wherein the human teacher was interacting with one stereotype robot and one 
active robot, graph (c) is a snapshot of this condition from the teacher’s first-person view and 
the cross-hair in the image indicated where the teacher was looking at; graph (b) shows the 
passive-following condition (PFC) which includes one stereotype robot and one passive robot 
and (d) is a snapshot of this condition. Details about the behaviors of different robot agents are 
presented in the experimental design section

The robots’ behaviors in the task were contingent on the human’s attention 
in real-time as both robots “knew” where the human teacher was looking and 
then responded with their own behaviors accordingly. For example, when the 
user switched his attention to look at an object, the robot agents would follow the 
human teacher to gaze at the same target ROI as well; if the teacher initiated a face 
look toward one of the robots, the robot would gaze back at the human’s face. By 
manipulating the robots’ gaze-contingent control, we created three different types 
of robot learners to perform three different types of cooperative gaze behaviors.

1.	 The stereotype robot followed exactly the participant’s gaze direction by looking 
at the same ROI that the participant attended to. When the participant started 
to look at the robot’s face, the stereotype robot looked back to the participant’s 
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face; when the participant looked away from the robot’s face and switched to a 
target object, the robot also followed this gaze switch to look at the same target 
object; when the participant generated a face look to the other robot, the robot 
showed stereotypical cooperative gazing behavior by not changing its eye gaze 
and continuing to gaze at the ROI where it was looking at previously.

2.	 The active robot, in addition to following the participant’s attentional switches 
in real time as the stereotype robot, generated additional face looks toward the 
human teacher to attract the teacher’s attention when the teacher was look-
ing at its robot peer (e.g. a stereotype robot). This situation is illustrated in 
Figure 3a: first the participant started to look at the stereotype robot; when 
the stereotype robot correctly detected this event, it looked back to the partici-
pant’s face as a response; meanwhile, the active robot also detected the user’s 
eye gaze switch, so it initialized a face look to the participant. As a result, 
both the active and stereotype robots looked at the teacher’s face at the same 
moment as shown in Figure 3b.

3.	 The passive robot followed the same general gaze following strategies as the 
above stereotype robot. However, when human participant’s eye gaze moved 
to the other robot peer, the passive robot imitated this behavior by looking 
at its robot peer as well – a passive cooperative gazing behavior. Thus, both 
the human participant and the passive robot looked at the other robot at the 
same time. This exact situation is shown in Figure 3c with a snapshot from the 
human’s view shown in Figure 3d.

Based on these three types of learners, two experimental conditions were created. 
The active-following condition (AFC) included one stereotype robot learner and 
one active robot learner (Figure 3a and 3c); and the passive-following condition 
(PFC) includes one stereotype robot and one passive robot (Figure 3b and 3d). 
Thus, the same stereotype robot appeared in both conditions but was paired with 
different learning partners: either a more active or a more passive robot peer. This 
design allows us to directly compare the active and the passive gaze following 
behaviors of the other robot peer and to see how the human teachers adjusted 
their own behaviors in response to different situations of multi-robot interaction.

Figure 4 shows examples of gaze data from the two conditions, which reflected 
the dynamics of joint gaze activities between the two robots and the human par-
ticipant. The focus of the present study is to understand momentary and dynamic 
gaze behaviors and speech acts from the human participant interacting with the 
two robots at the same time. In the active-following condition shown in Figure 4a, 
a human agent was interacting with an active and a stereotype robot. The first data 
stream is the ROI stream from the human’s eye gaze, indicating which object or 
robot the human participant was attending to (e.g. gazing at one of the four objects 
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or on one of the two robots). The other two data streams represent where the 
two robot looked. Three interactive behavioral patterns from those data streams 
(labeled from left to right on the top) are highlighted to illustrate the types of pat-
terns we investigated using our multimodal real-time platform: (1) joint attention: 
all three agents visually attended to the same object (colored in magenta); (2) the 
human participant gazed at the active robot, the active robot responded by looking 
back at the human while the stereotype continued to look at the object; and (3) the 
human user gazed at the stereotype robot, the stereotype robot looked back at the 
human while the active robot also initialized a face look toward the human.

In the passive-following condition wherein a human agent was interacting 
with a passive robot and a stereotype robot, Figure 4b shows the three temporal 
gaze streams derived from eye tracking data from the participant (top), the stereo-
type robot (middle) and the passive robot (bottom). Three highlighted interaction 
moments are (1) joint attention: all three agents visually attend to the same object 
(colored in maroon); (2) face look at the passive robot: the human user gazed at 
the passive robot, the passive robot responded by looking back to the human while 
the stereotype robot kept its gaze on the object previously attended to; and (3) face 
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0 Time (in seconds)

Time (in seconds)
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Human

Stereotype robot

Passive robot

Participant or robot agent looking at objects
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Participant looking at active robot

Participant looking at stereotype robot
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Figure 4.  (a) The three data streams are derived from ROI gaze data of the user and the two 
robots (one stereotype robot and one active robot) in the active-following condition (AFC). 
(b) The three streams are derived from ROI gaze data of the participant, the stereotype robot 
and the passive robot in the passive-following condition (PFC). Details of the three labeled 
moments in each figure are explained in the experimental design section
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look at the stereotype robot: the human user gazed at the stereotype robot, the ste-
reotype robot looked back to the human and the passive robot joined the human 
to also gaze at the stereotype robot.

2.3  Hypotheses

Our main goal was to investigate whether different cooperative gazing behaviors 
between the two conditions have effects on both the teacher’s behaviors and the 
whole group’s interaction dynamics. Consequently, we developed five hypotheses:

Hypothesis 1. Participants will be sensitive to the different cooperative gaz-
ing behaviors demonstrated by different robot learners within each condition. 
Participants will look more at the active robot’s face and generate fewer face 
looks to the stereotype robot and the passive robot. When multiple human par-
ticipants are communicating with each other or interacting with a single human-
oid robot, they use eye gaze to monitor their partner’s attention allocation and 
react in real-time (Vertegaal et al. 2001; Rehm & André 2005; Mutlu et al. 2009). 
So we predict that in our experiment, the face looks generated by the users to 
one particular robot learner will be proportional to how often that robot looks 
towards the user’s face. Thus, since the active robot was designed to initiate more 
face looks as its cooperative gazing behavior, the teachers will also look at the 
active robot more often.

Hypothesis 2. Participants will spend about the same amount of time look-
ing at the stereotype robot in both conditions. The amount of attention focused 
on the stereotype robot will not be influenced by who its robot peer is between 
the two conditions. There are three possible outcomes: (1) No influence – 
participants will spend the same amount of time looking at the stereotype robot 
in each of the two conditions; (2) Facilitative effect – participants will gener-
ate more face looks to the stereotype robot in the active-following condition 
compared to the passive-following condition. If the active robot elicits more 
face looks from the participant, then participants may not only spend more 
time looking at the active robot but also generate more looks to its robot peer; 
(3)  Negative effect – participants will look less to the stereotype robot in the 
active condition compared to the passive-following condition. Since the active 
robot will attract more attention from the participants, they will naturally look 
less toward the stereotype robot; and when the passive robot generates more 
looks to the stereotype robot, this behavior may encourage the human teacher 
to look more to the stereotype robot too. Among the three possible effects, we 
believe that as long as the stereotype robot has the same reactive behavioral 
strategy in both conditions, participants should also behave consistently toward 
the same type of learner across conditions.
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Hypothesis 3. Participants will pay more attention to the two robot learn-
ers and look less at the objects in the active-following condition compared to the 
passive-following condition. Following our first and second hypothesis, we predict 
that since the active robot will attract more attention from the user, the overall 
proportion of time spent looking at the robots will be larger than in the passive-
following condition. Consequently, the user will look less at the objects.

Hypothesis 4. Participants will generate more speech utterances in the active-
following condition than in the passive-following condition. Utterances from the 
speaker are shaped collaboratively by the interactors as relevant and meaningful 
actions in the shared environment (Goodwin 2007). Speech behavior and eye 
movement are often closely coupled in human-human interaction and human-
robot interaction (Kendon 1967; Staudte & Crocker 2009). In both dyadic and 
group conversions, human participants tend to divert eye gaze when they start 
to speak, and engage in more mutual gaze when they are about to terminate their 
turns in conservation (Vertegaal et al. 2001). This led us to predict that the amount 
of utterances generated by the users will be proportional to the amount of mutual 
face looks during interaction. Following the previous hypotheses, the teachers 
will generate more speech acts in the active-following condition than the passive-
following condition since they are engaged in more mutual gaze moments in the 
active-following condition.

Hypothesis 5. Participants will show different gaze shifting patterns around 
naming moments between the two conditions. Here, we refer to the moments 
when the participants vocally pronounced the object names as “naming events” 
or “naming moments”. When people describe a visual object, they tend to fix-
ate on the target about one second before actually referring to it (Meyer et  al. 
1998; Griffin & Bock 2000). In addition, gaze alternation is considered a major 
form of joint attention: looking at a target object with interspersed glances to the 
social partner (Bard et al. 2008). In our learning task, the interaction was cen-
tered on teaching the object names to the robot learners. Therefore, it is pivotal to 
see whether we are able to observe this gaze-shifting pattern between the named 
object and the robot learners in our experiments and whether there will be differ-
ences between the two conditions.

2.4  Experimental procedure

The procedure was the same in both conditions. The participants were given four 
novel single-colored objects in each trial and each novel object was given an artifi-
cial two-syllable name (for example, gasser or kaki). The participants were asked to 
memorize the object names beforehand, and during the trial they were instructed 
to introduce these novel objects to both robot learners. Each trial lasted for about 
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three minutes. There were three teaching trials in total after which an experimenter 
signaled the participants to stop and exchange the objects at the end of each trial. 
10 undergraduate students at Indiana University were recruited and participated 
for the active-following condition and 11 for the passive-following condition (an 
additional 5 participants were excluded due to technical issues). After eliminating 
some trials where the proportions of valid eye-tracking data were exceptionally 
low (for example, 40% valid data compared to around 80% to 90% for the retained 
trials), the data set consisted of 28 trials in the active-following condition and 
32 trials in the passive-following condition.

2.5  Data collection

Multimodal data were recorded during the experiment to examine how each agent 
responded to the others at the micro-behavioral level. As shown in Figure 2, eye 
movements from human participants were tracked and coded as 6 ROIs in the real-
time image processing system (four objects and two robot agents). These frame-
by-frame eye gaze data were recorded as sequential data streams with categorical 
values indicating the ROIs and then were further processed to detect attentional 
switches from one ROI to another. In addition, we also recorded the participant’s 
speech during the experiment. An endpoint detection algorithm based on speech 
silence was implemented to segment a speech stream into spoken utterances. Each 
utterance may contain one or several words. Spoken utterances were transcribed 
by three human coders.

2.6  Validation of the gaze-contingent interaction system

To our best knowledge, the system presented here is one of the few gaze-contingent 
systems based on real-time eye tracking (Yoshikawa et al. 2006; Yu et al. 2012; 
Zhao et al. 2012). Due to the challenge of implementing and debugging a real-time 
system, validating the implementation is a necessary step. We first analyzed the 
gaze data from the robots collected in the experiment to ensure that the system 
was running smoothly and the robot learners were executing the correct coopera-
tive gazing behaviors as designed. The amount of time the robots spent looking at 
different ROIs (excluding when the robots were executing their head turns) was 
normalized by the total experimental time to derive proportions. The results (see 
Table 1) show that in both conditions, both robots were either engaged in mutual 
gaze with the participants or looking at the objects for more than 80% of the dura-
tion of the experiments.

We also calculated the successful following rates of both robots in each condi-
tion. Successful following was defined as following the participant’s gaze shift within 
a window of 2 seconds from the shift onset. The lag of 2 seconds was chosen for the 
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two reasons: (1) as mentioned in system implementation, there was a 657ms sys-
tem lag even if a robot decided to follow immediately; and (2) there were situations 
where the target object or participant’s face was not in the robot’s view, and the robot 
had to conduct a visual search by turning his head to locate the target. Based on the 
2-second lag, both robots in each condition were able to follow the participant’s eye 
movements correctly for 60–70% out of all the gaze shift instances generated by the 
participants. As described in the implementation section, the robots would not fol-
low the participant’s attention when the participant just briefly glimpsed at an object 
and then switched attention to somewhere else. This is a sensible decision given the 
dynamic nature of a human’s attention system. Even in human-human interactions, 
we will not be able to follow every single gaze shift from the other person.

Both the human participants and the robot learners were all actively engaged 
in the interaction and exhibited highly dynamic multimodal behaviors. Moreover, 
the different robot learners successfully executed looking behaviors according to 
the experimental designs. In the next section, we focus on how the human teach-
er’s attention and speech were influenced by the behaviors from the two robots, 
both jointly and individually.

3.  Results

In this section, we will first report the results derived from the gaze data, followed 
by the results from the speech acts. Next, we will integrate gaze and speech data to 
analyze dynamic multimodal patterns.

3.1  Eye movements

We first examined how long and how frequently participants looked at the two 
robots and objects in the interaction. Table 3 shows mean gaze duration and 

Table 1.  Robot attention in the interaction

Proportion of total time Active-following  
condition

Passive-following  
condition

stereotype 
robot

active 
robot

stereotype 
robot

passive 
robot

Looking at objects 71.55% 50.87% 73.93% 65.17%
Looking at the human’s face 9.37% 30.34% 7.29% 4.04%
Looking at the other robot 0.00% 0.00% 0.00% 12.64%
sum 80.91% 81.21% 81.22% 81.85%
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frequency of looks. The mean durations of participants’ face looks at the two 
robots were consistent across the two experimental conditions. This shows that 
when participants decided to check one of the robots’ faces, independent of the 
cooperative behavioral patterns of the robot, and independent of the particular 
experimental contexts, they always briefly looked at the robot’s face for around 
400ms before switching their attention back to an object or the other robot. Future 
studies in different task contexts will be needed to further test this. If we are able 
to find a similar face looking duration in other studies, this face-looking duration 
can be used as a reliable micro-level metric of human social attention in building 
human-robot interactions.

Table 2.  Eye movement results on different measures

Active-following condition Passive-following condition

objects stereotype 
robot

active 
robot

object stereotype 
robot

passive 
robot

Mean duration
(in seconds)

1.40 0.42 0.45 1.19 0.41 0.38

Frequency of looks  
(per minute)

35.39 10.75 13.32 43.33 9.35 5.58

We found significant differences in face look frequency across the conditions, 
showing that participants were indeed sensitive to the different cooperative gaze 
behaviors. Within the passive-following condition, participants looked at the ste-
reotype robot more than the passive one (t(19) = 2.29, p = 0.03); (2). Within the 
active-following condition, participants looked at the active robot more than the 
stereotype robot on average, but it was not statistically significant (t(19) = 1.11, 
p = 0.29). We also compared the active and passive robots in the two experimental 
conditions as they shared the same social peer (the stereotype robot). There was 
a large difference in the frequency of face looks to the two robots (t(19) = 2.29, 
p = 0.03). Those results support our first hypothesis: at least in the present task, 
even though participants were teaching two robots as a group, they were sensi-
tive to individual behavioral patterns from different robots and treated them 
differently.

Given that both experimental conditions had a stereotype robot, we next 
directly compared the participants’ gaze behaviors toward the stereotype robot to 
test contextual influence when the same type of robot learner was accompanied 
by the different robot peers. We found no significant difference in the frequency 
of face looks (t(19) = 0.52, p = 0.61) nor the look durations (t(19) = 0.25, p = 0.80) 
toward the stereotype robot across the two conditions, which supported our 
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second hypothesis. Thus, even though participants treated the two robots differ-
ently within each experimental condition, they treated the same robot type consis-
tently across the two conditions. Moreover, we found that there was no significant 
difference in the duration of looks to the objects between the two conditions 
(t(19) = 0.56, p = 0.58). On average, the participants in the active-following condi-
tion generated fewer object looks compared with those in the passive-following 
condition, but the difference was not significant (t(19) = 1.25, p = 0.23). Thus, our 
third hypothesis was not well supported.

To summarize the results so far, there were no differences in looking dura-
tions from the participants toward the robots and objects. Moreover, there were 
no differences in their looking behaviors toward the stereotype robot in the two 
experimental conditions. But the participants in the active-following condition 
generated significantly more frequent face looks to the active robot compared to 
the passive robot in the passive-following condition. In the active-following con-
dition, face looks toward the stereotype robot led to a consequential look from the 
active robot to the participant’s face, which in turn may elicit the participants to 
switch their attention from the stereotype robot to the active robot instead. As a 
result, there were more face looks toward the active robot. In the passive-following 
condition, when participants attended to the stereotype robot, the passive robot 
also looked at its social peer to show its own interest toward the stereotype robot. 
Even though this behavior did not make participants look more or longer toward 
the stereotype robot, it did make them look less toward the passive robot.

3.2  Speech acts

On average, participants in the two conditions produced a similar number of 
words per minute (Mactive = 129.75, Mpassive = 123.73; t(19) = 0.25, p = 0.80) and 
their overall vocabulary size used in the experiment did not differ (Mactive = 180.40, 
Mpassive = 176.36; t(19) = 0.16, p = 0.88). In addition, the participants in both con-
ditions generated a similar number of words per spoken utterance (Mactive = 5.22; 
Mpassive = 5.97, t(19) = 0.95, p = 0.35). However, the human teachers did gener-
ate fewer spoken utterances in the passive-following condition (Mpassive = 20.71) 
compared to the active condition (Mactive = 26.45; t(19) = 2.36, p = 0.03). This 
confirmed our fourth hypothesis: the different cooperative gazing behaviors dem-
onstrated by the active robot and the passive robot have influenced the overall 
group dynamics by eliciting more speech utterances from the teachers in the 
active-following condition.

Since the task was to teach object names to the two robots, we were interested 
in how well the human teachers named objects for the two robot learners: in which 
condition the human participants presented better teaching behaviors by naming  
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the objects more frequently and providing cues to help learners form correct 
word-object mappings. The participants generated 6.76 naming utterances per 
minute in the active condition and 4.98 naming utterances per minute in the pas-
sive condition, but this difference was not significant (tnaming (19) = 1.21, p = 0.24). 
We defined the moments when the participants produced object names as nam-
ing events. The similar numbers of naming events in the two conditions reflect 
only the quantity of naming instances in the interaction; the quality of naming 
instances is probably more critical for effective teaching, which is the focus of the 
multimodal data analysis reported next.

3.3  Attention dynamics around naming moments

When naming an object, the human teachers may attend to the named object most 
of the time; alternatively, they may look toward one or both of the two robots 
to check whether their attention was on the named object. Such gaze alterna-
tion patterns between the objects and social partners are essential for creating 
the joint attention moments that facilitate learning in human-human interaction 
(Carpenter et al. 1998; Tomasello et al. 2005; Yu et al. 2005; Meltzoff et al. 2009). 
Consequently, we focused on the moments right before and after a naming utter-
ance, and measured the dynamics of participants’ visual attention as a way to inte-
grate speech data with gaze data.

There are four types of attentional shifts between different gaze ROIs in total: 
(1) shifts among different objects (e.g. from the named object to other objects); 
(2) shifts between objects and the stereotype robot; (3) shifts between objects and 
the active robot in the active-following condition, or between objects and the pas-
sive robot in the passive-following condition; (4) shifts between the two differ-
ent robot learners. We then took an approach to analyzing temporal dynamics 
of attention switches which has been used in psycholinguistic studies to capture 
temporal profiles across a related class of events (Allopenna et al. 1998; Yu et al. 
2009). Such profiles enable us to discern important moments within a trajectory 
and compare temporal trends across trajectories. To generate the temporal trajec-
tories for the participants’ attentional shifts prior to the naming events, we first 
aligned all the naming events by their onsets. Then, a 1000-msec moving win-
dow with 200-msec moving step was used. Within every window, we calculated 
the number of attentional switches from each participant, and then derived the 
mean value averaged across all participants. For example, in Figure 5, for the first 
data point of the brown line in subplot (a), we calculated the average frequency of 
attentional switches between different objects in AFC from 6.40 seconds to 5.40 
seconds before the onset of naming events and placed the data marker at the cen-
ter of this time window which is -5.90 seconds on the x-axis. For the next window 
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which was 6.20 seconds to 5.20 seconds before the onset of naming events, the 
same calculation was carried out again to derive the second data point in the same 
trajectory.1 We applied this calculation to all of the four types of attentional switch 
from moments prior to and following naming events in both conditions.
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Figure 5.  The participants’ attentional shifts between different objects before and after naming 
events in both the active-following condition (AFC) and the passive-following condition 
(PFC). The subplot (a) depicts the trajectory before naming events; and subplot (b) describes 
the moments after naming events. All the naming moments were aligned by their onsets in  
(a) and by their offsets in (b). The detailed procedure for deriving the trajectories was 
explained in the text above
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In Figure 5, the two subplots (a, b) showed the trajectories of attentional 
shifts between different objects before and after naming events. We tested the dif-
ferences between the active-following condition and the passive-following con-
dition by conducting two 2 (two between-subjects conditions) × 30 (frequency 
values from 30 moving time windows, the repeated measures factor) mixed-
effects analyses of variance on the frequencies of gaze shifts both before and after 
the naming moments. There were significantly more attentional switches between 
different objects in the passive-following condition than in the active-following 
condition (Fbefore(1,59) = 127.69, p < 0.0001; Fafter(1,59) = 350.52, p < 0.0001). 
In well-documented literature on the coupling between human eye movement 
and speech production (Meyer et al. 1998; Griffin & Bock 2000), people gener-
ated increased looks toward an object when mentioning or referencing it by its 
name in speech. Around naming events, gaze cues that provide accurate word-
object associations are meaningful signals that can facililate learning for the 
robots. However, in the passive-following condition, the participants frequently 
switched their attention between the named object and other objects. This behav-
ioral pattern can be confusing for learners to infer which attended object was the 
target that the teacher was referring to at that moment. Thus, compared with the 
passive-following condition, human teachers in the active-following condition 
provided better teaching signals with fewer attention switches between the target 
and irrelevant objects.

We further categorized the attentional switches according to named objects 
and non-named objects in each naming instance, and plotted the trajectories 
of attentional switches between the named objects and the two robot agents in 
both conditions. Figure 6 shows that in the active-following condition, the par-
ticipants switched their attention more often between the target object and the 
active robot than the stereotype robot. A 2 (two robot learners) × 30 (frequency 
values from 30 moving time windows, the repeated measures factor) mixed-
effects analysis of variance revealed that the pattern is statistically significant 
(Fbefore(1,59) = 35.15, p  < 0.0001; Fafter(1,59) = 21.04, p = 0.0001). Such gaze 
alternations created more joint attention moments between the participants 
and the active robot. This suggests that the participants cared more about the 
active robot’s attentional state during naming than the stereotype robot. In the 
passive-following condition, participants switched their attention significantly 
more often between the target object and the stereotype robot than the pas-
sive robot before and after naming moments (Fbefore(1,59) = 83.05, p < 0.0001; 
Fafter(1,59) = 9.5, p < 0.005). Taken together, human teachers consistently paid 
more attention toward the more active robot learner (the active robot in AFC 
and the stereotype robot in PFC) when they were referring to an object verbally 
by its name.
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In summary, although there was no significant difference in the overall num-
bers of naming events between the two experimental conditions, a closer look 
at the multimodal data between speech and gaze data revealed different micro-
level multimodal dynamics around naming moments which confirms our fifth 
hypothesis. Overall, the participants in the active-following condition paid more 
attention to the two robots (and primarily to the active robot) and provided more 
meaningful teaching behaviors in the active-following condition compared to par-
ticipants in the passive-following condition. This suggests that actively eliciting 
the human teacher’s attention in a multiparty interaction is beneficial to engaging 
the teacher in the interaction.
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Figure 6.  The attentional shifts before and after naming events between the targeted objects 
and the two robot agents in the active-following condition (AFC) and the passive following 
condition (PFC). The subplots (a, c) describe the trajectories before naming events and (b, d) 
are for after naming events. The frequencies of attentional switches were calculated with the 
same method as Figure 5 by taking a 1-second window at 200ms moving step along the time 
line. The detailed procedure for deriving the trajectories was explained in the main text
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4.  General discussions

In this paper, we focus on investigating a human multi-robot interaction scenario 
wherein human participants were addressing multiple robots at the same time by 
exploring the functionalities of gaze cue provided by robot listeners. Four of our 
five original hypotheses are well supported by behavioral data. Participants looked 
at the active robot more frequently compared to the passive robot and generated 
more speech utterances in the active following condition. The stereotype robot 
was treated consistently across the two conditions even though it was paired with 
a different robot peer. Furthermore, we not only found that the human partici-
pants were highly sensitive and responsive to different cooperative gaze behaviors, 
but also provided evidence that the participants were showing more meaningful 
teaching behaviors in the active-following condition. For the third hypothesis, we 
did observe that on average, the users generated fewer looks at the objects in the 
active-following condition, but the difference was not statistically significant.

4.1  Gaze cue in human multi-robot interaction

Due to the importance of gaze cues in human-human communication (Argyle & 
Cook 1976; Knapp et al. 2013), numerous studies have investigated the effective-
ness of eye movement behaviors in human-robot interaction (Imai et al. 2003; 
Rich et al. 2009). During face-to-face interaction between a human subject and 
a single robot agent, participants are highly sensitive to the robot’s gaze cues and 
tend to direct and shift their own gaze responsively in the same way as when they 
are interacting with other humans (Yu et al. 2010a). In Muhl and Nagai (2007), all 
the human participants responded immediately when the robot agent looked away 
from the participant’s face and averted its attention at random moments. All this 
suggests that a robotic interactor needs to show appropriate responsive behaviors 
that may depend on different stages and contexts of conversation and interaction. 
Nakano and Nishida (2005) classified the user’s eye movements into different cat-
egories and proposed different gaze strategies for each scenario. For example, in 
the scenario that the user has not paid attention to either the agent or the target 
display, in order to keep the interaction natural, the agent itself also needed to 
show disengagement signals accordingly.

When multiple human participants are engaged in the same interaction 
with a robot agent, the eye gaze cue from the robot still has a large impact in 
influencing and constructing the group communication. The study by Rehm and 
André (2005) showed that when two human participants were interacting with a 
virtual agent, not only did they accept this agent as a conversational partner but 
also paid more attention to the virtual agent than the other human participant. 
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In Trafton et al. (2008), the users rated the robot’s behavior as more natural when 
the robot waited around 500ms after the speakers ended their turns then switched 
attention as opposed to responding immediately. Gaze cues from a robot agent 
can even regulate key moments and shape specific roles in human participants 
during multiparty conversations (Mutlu et al. 2009) and give precise direction 
to other members among a group of human participants (Kirchner et al. 2011). 
But we have not found reported results exploring situations when human users 
are interacting with multiple robots at the same time. We did not know whether 
the users would be sensitive to the robots’ cooperative gaze behaviors and how 
they would dynamically adjust their attention allocation between different robot 
agents in real-time.

By implementing a real-time gaze contingent multi-robot interactive plat-
form, we created three distinct types of robot learners showing different coopera-
tive gaze behaviors in two experimental conditions (see Figure 3) to answer the 
above questions. The results revealed that different cooperative gaze behaviors can 
significantly influence the participants’ gaze and speech acts. The active coopera-
tive gazing behavior has attracted the most visual attention out of all three robot 
learners. And the passive-following gaze behavior did not succeed in directing 
more attention to its robot peer by imitating the participant’s behavior to look 
toward the stereotype robot. This behavior has only made the participants pay 
significantly less attention to the passive robot itself compared to the other two 
robot agents.

In addition, as for the same type of robot agent between the two different 
conditions, the human participants paid a similar amount of attention to the ste-
reotype robot even when it was paired with different robot peers between the two 
conditions. It shows that as long as the robot learners are programmed with the 
same behavioral strategy, the responses generated by the participants will not be 
largely influenced by the other robot’s gazing behavior within the shared envi-
ronment. Human participants treat the same robot agent consistently in different 
social contexts. These findings have provided valuable heuristics in constructing a 
social agent’s behavior during group interaction.

4.2  Micro-level mutual reflexivity

In multiparty communications, the entire group will need to control, evaluate and 
integrate information conveyed by each participant to maintain common ground 
(Bales 1950). The key to mediating group interaction is for each agent to consider the 
subsequent behaviors from all the participants in the conversation and coordinate 
with them by conveying the correct behavioral cues. This is described as “Mutual 
Reflexivity” between speakers and listeners “within interaction participants treat 
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their co-participants as reflexive actors” (Goodwin 2007). As a result, the actions 
of the listeners will considerably influence the speakers’ ways of constructing the 
entire conversation. In the process of achieving such mutual reflexivity, eye move-
ment is often used as a prominent source to monitor each other’s momentary 
attention and regulate group communication (Kendon 1967; Vertegaal et al. 2000; 
Knapp et  al. 2013). Here we provide empirical evidence derived from analyzing 
micro-level gaze data around naming speech acts, showing that the same phenom-
enon also holds in human multi-robot interaction.

During the word learning task, the human participants tried to teach object 
names to the two robot learners by repeatedly naming the objects and describing 
their features in detail. Thus, we extracted all the naming moments and calculated 
the attentional switches between different gaze ROIs that led up to, during and 
after the naming events. The teachers in the passive-following condition were fre-
quently switching their visual attention between different objects around naming 
moments. To look at non-target objects during naming utterances would greatly 
confuse the learners on the account of which objects the teachers were referring to. 
Thus, the teachers in the active-following condition were showing better teaching 
behaviors. And they were checking the active robot significantly more often which 
has created more joint attention between the participants and the active robot. 
This suggested that the participants cared more about where the active robot was 
looking around naming utterances. In a shared environment, a group of more 
active learners will elicit more attention from human participants especially dur-
ing key teaching moments.

5.  Conclusion

There are two main contributions of this paper. First, we designed and implemented 
a real-time gaze contingent multi-robot platform that allows a human participant to 
interact with two robots performing different reactive behaviors in a shared environ-
ment. The participant’s first-person view video and eye movement were recorded 
and processed in real time, so that the participant’s gaze direction at each moment 
was sent to both robots as signals to trigger their responsive eye movements. With 
a word learning task, the participants as a language teacher were able to freely inter-
act with the robot learners, engage their attention by switching eye gaze, speaking, 
manipulating the objects, gesturing and generating other nonverbal bodily cues.

Second, we present evidence that in human multi-robot interaction, the par-
ticipants were highly sensitive to all the robot agents’ gaze behaviors even when 
they were not directly looking at them. With the gaze contingent multi-robot 
platform, we created three different types of robot learners by choosing three 



	 Cooperative gazing behaviors in human multi-robot interaction 	 

different types of cooperative gazing behaviors. There were two experimental 
conditions: the active-following condition includes one stereotype robot and one 
active robot; and in the passive-following condition, the teachers were interacting 
with the same stereotype robot and a passive robot. We found that the teachers’ 
responsive behaviors were significantly influenced by the different cooperative 
gazing behaviors. The teachers even showed more meaningful teaching behaviors 
in the active-following condition. Thus, active robot learners were more likely to 
engage human teachers to provide more and better teaching signals.

Due to the complexities of multiparty interaction, there are many topics left 
to be explored in human multi-robot interaction, such as how should the robot 
behave as an informant, or as a participant being directly addressed and taking 
turns to speak. With this platform, we are moving toward a more complete under-
standing of how human participants coordinate their own actions to different 
behaviors performed by multiple robot agents. This effort will lead to building a 
more naturalistic and effective participant model for social interactive robots and 
ultimately to building social robots to interact as a group with human users.
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Notes

1.  Other windows sizes were also considered; since we were deriving the frequency of gaze 
shifts, the numerical values as well as the overall temporal trends of the trajectories with other 
window sizes were very similar to the results presented here.
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